Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2781: 105-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502447

RESUMO

Modeling human pregnancy is challenging as two subjects, the mother and fetus, must be evaluated in tandem. To understand pregnancy, parturition, and adverse pregnancy outcomes, the two feto-maternal interfaces (FMi) that form during gestation (i.e., the placenta and fetal membrane) need to be investigated to understand their biological roles, and organ dysfunction can lead to adverse outcomes. Adverse pregnancy outcomes such as preterm rupture of the membranes, spontaneous preterm birth, preeclampsia, intra-uterine growth restriction, and gestational diabetes rates are on the rise worldwide, highlighting the need for future studies and a better understanding of molecular and cellular pathways that contribute to disease onset. Current in vivo animal models nor in vitro cell culture systems can answer these questions as they do not model the function or structure of human FMis. Utilizing microfabrication and soft-lithography techniques, microfluidic organ-on-chip (OOC) devices have been adapted by many fields to model the anatomy and biological function of complex organs and organ systems within small in vitro platforms.These techniques have been adapted to recreate the fetal membrane FMi (FMi-OOC) using immortalized cells and collagen derived from patient samples. The FMi-OOC is a four-cell culture chamber, concentric circle system, that contains both fetal (amniochorion) and maternal (decidua) cellular layers and has been validated to model physiological and pathological states of pregnancy (i.e., ascending infection, systemic oxidative stress, and maternal toxicant exposure). This platform is fully compatible with various analytical methods such as microscopy and biochemical analysis. This protocol will outline this device's fabrication, cell loading, and utility to model ascending infection-related adverse pregnancy outcomes.


Assuntos
Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Animais , Humanos , Placenta/metabolismo , Membranas Extraembrionárias/metabolismo , Linhagem Celular , Tecnologia
2.
Methods Mol Biol ; 2781: 119-130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502448

RESUMO

The inflammatory process leading to human labor is mostly facilitated by immune cells, which can be studied by isolating and characterizing primary immune cells from the feto-maternal interface. However, difficulty and inconsistency in sampling approaches of immune cells and short lifespan in vitro prevent their usage in mechanistic studies to understand the maternal-fetal immunobiology. To address these limitations, existing cell line models can be differentiated into immune-like cells for use in reproductive biology experiments. In this chapter, we discussed cell culture methods of maintaining and differentiating HL-60, THP-1, and NK-92 cells to obtain neutrophil-like, macrophage-like, and decidual natural killer-like cells, respectively, which can then be used together with intrauterine cells to elucidate and investigate immune mechanisms that contribute to parturition.


Assuntos
Decídua , Imunidade Inata , Feminino , Humanos , Macrófagos/metabolismo , Células Matadoras Naturais , Trofoblastos/metabolismo
3.
Am J Pathol ; 194(5): 684-692, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320630

RESUMO

Preterm, prelabor rupture of the human fetal membranes (pPROM) is involved in 40% of spontaneous preterm births worldwide. Cellular-level disturbances and inflammation are effectors of membrane degradation, weakening, and rupture. Maternal risk factors induce oxidative stress (OS), senescence, and senescence-associated inflammation of the fetal membranes as reported mechanisms related to pPROM. Inflammation can also arise in fetal membrane cells (amnion/chorion) due to OS-induced autophagy and epithelial-mesenchymal transition (EMT). Autophagy, EMT, and their correlation in pPROM, along with OS-induced autophagy-related changes in amnion and chorion cells in vitro, were investigated. Immunocytochemistry staining of cytokeratin-18 (epithelial marker)/vimentin (mesenchymal marker) and proautophagy-inducing factor LC3B were performed in fetal membranes from pPROM, term not in labor, and term labor. Ultrastructural changes associated with autophagy were verified by transmission electron microscopy of the fetal membranes and in cells exposed to cigarette smoke extract (an OS inducer). EMT and LC3B staining was compared in the chorion from pPROM versus term not in labor. Transmission electron microscopy confirmed autophagosome formation in pPROM amnion and chorion. In cell culture, autophagosomes were formed in the amnion with OS treatment, while autophagosomes were accumulated in both cell types with autophagy inhibition. This study documents the association between pPROMs and amniochorion autophagy and EMT, and supports a role for OS in inducing dysfunctional cells that increase inflammation, predisposing membranes to rupture.


Assuntos
Membranas Extraembrionárias , Ruptura Prematura de Membranas Fetais , Feminino , Recém-Nascido , Humanos , Membranas Extraembrionárias/metabolismo , Ruptura Prematura de Membranas Fetais/metabolismo , Inflamação/patologia , Transição Epitelial-Mesenquimal , Autofagia
4.
Lab Chip ; 24(6): 1727-1749, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38334486

RESUMO

The effects of endocrine-disrupting compounds (EDCs) on the placenta, a critical gestational organ for xenobiotic protection, are well reported; however, models to determine the role of EDCs in placental disruption are limited. An advanced 2nd-trimester human placenta organ-on-chip model (2TPLA-OOC) was developed and validated, with six representative cells of the maternal and the fetal interface interconnected with microchannels. Various EDCs (150 ng mL-1 each of bisphenol A, bisphenol S, and polybrominated diphenyl ethers-47 and -99) were gradually propagated across the chip for 72 hours, and their various effects were determined. Cigarette smoke extract (CSE), an environmental risk factor, was used as a positive control. EDCs produced overall oxidative stress in the placental/decidual cells, induced cell-specific endocrine effects, caused limited (<10%) apoptosis/necrosis in trophoblasts and mesenchymal cells, induced localized inflammation but an overall anti-inflammatory shift, did not change immune cell migration from stroma to decidua, and did not affect placental nutrient transport. Overall, (1) the humanized 2TPLA-OOC recreated the placental organ and generated data distinct from the trophoblast and other cells studied in isolation, and (2) at doses associated with adverse pregnancies, EDCs produced limited and localized insults, and the whole organ compensated for the exposure.


Assuntos
Decídua , Placenta , Gravidez , Humanos , Feminino , Trofoblastos , Feto
5.
Am J Reprod Immunol ; 90(6): e13797, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009054

RESUMO

The vaginal microbiome includes diverse microbiota dominated by Lactobacillus [L.] spp. that protect against infections, modulate inflammation, and regulate vaginal homeostasis. Because it is challenging to incorporate vaginal microbiota into in vitro models, including organ-on-a-chip systems, we assessed microbial metabolites as reliable proxies in addition to traditional vaginal epithelial cultures (VECs). Human immortalized VECs cultured on transwells with an air-liquid interface generated stratified cell layers colonized by transplanted healthy microbiomes (L. jensenii- or L. crispatus-dominant) or a community representing bacterial vaginosis (BV). After 48-h, a qPCR array confirmed the expected donor community profiles. Pooled apical and basal supernatants were subjected to metabolomic analysis (untargeted mass spectrometry) followed by ingenuity pathways analysis (IPA). To determine the bacterial metabolites' ability to recreate the vaginal microenvironment in vitro, pooled bacteria-free metabolites were added to traditional VEC cultures. Cell morphology, viability, and cytokine production were assessed. IPA analysis of metabolites from colonized samples contained fatty acids, nucleic acids, and sugar acids that were associated with signaling networks that contribute to secondary metabolism, anti-fungal, and anti-inflammatory functions indicative of a healthy vaginal microbiome compared to sterile VEC transwell metabolites. Pooled metabolites did not affect cell morphology or induce cell death (∼5.5%) of VEC cultures (n = 3) after 72-h. However, metabolites created an anti-inflammatory milieu by increasing IL-10 production (p = .06, T-test) and significantly suppressing pro-inflammatory IL-6 (p = .0001), IL-8 (p = .009), and TNFα (p = .0007) compared to naïve VEC cultures. BV VEC conditioned-medium did not affect cell morphology nor viability; however, it induced a pro-inflammatory environment by elevating levels of IL-6 (p = .023), IL-8 (p = .031), and TNFα (p = .021) when compared to L.-dominate microbiome-conditioned medium. VEC transwells provide a suitable ex vivo system to support the production of bacterial metabolites consistent with the vaginal milieu allowing subsequent in vitro studies with enhanced accuracy and utility.


Assuntos
Microbiota , Vaginose Bacteriana , Feminino , Humanos , Lactobacillus/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Vagina/microbiologia , Vaginose Bacteriana/microbiologia , Bactérias , Anti-Inflamatórios
6.
Front Pharmacol ; 14: 1241815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663251

RESUMO

Introduction: Preterm birth rates and maternal and neonatal mortality remain concerning global health issues, necessitating improved strategies for testing therapeutic compounds during pregnancy. Current 2D or 3D cell models and animal models often fail to provide data that can effectively translate into clinical trials, leading to pregnant women being excluded from drug development considerations and clinical studies. To address this limitation, we explored the utility of in silico simulation modeling and microfluidic-based organ-on-a-chip platforms to assess potential interventional agents. Methods: We developed a multi-organ feto-maternal interface on-chip (FMi-PLA-OOC) utilizing microfluidic channels to maintain intercellular interactions among seven different cell types (fetal membrane-decidua-placenta). This platform enabled the investigation of drug pharmacokinetics in vitro. Pravastatin, a model drug known for its efficacy in reducing oxidative stress and inflammation during pregnancy and currently in clinical trials, was used to test its transfer rate across both feto-maternal interfaces. The data obtained from FMi-PLA-OOC were compared with existing data from in vivo animal models and ex vivo placenta perfusion models. Additionally, we employed mechanistically based simulation software (Gastroplus®) to predict pravastatin pharmacokinetics in pregnant subjects based on validated nonpregnant drug data. Results: Pravastatin transfer across the FMi-PLA-OOC and predicted pharmacokinetics in the in silico models were found to be similar, approximately 18%. In contrast, animal models showed supraphysiologic drug accumulation in the amniotic fluid, reaching approximately 33%. Discussion: The results from this study suggest that the FMi-PLA-OOC and in silico models can serve as alternative methods for studying drug pharmacokinetics during pregnancy, providing valuable insights into drug transport and metabolism across the placenta and fetal membranes. These advanced platforms offer promising opportunities for safe, reliable, and faster testing of therapeutic compounds, potentially reducing the number of pregnant women referred to as "therapeutic orphans" due to the lack of consideration in drug development and clinical trials. By bridging the gap between preclinical studies and clinical trials, these approaches hold great promise in improving maternal and neonatal health outcomes.

7.
Am J Reprod Immunol ; 90(4): e13770, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37766409

RESUMO

PROBLEM: Ascending bacterial infection is associated with ∼ 40% of spontaneous preterm birth (PTB), and Ureaplasma spp. is one of the most common bacteria isolated from the amniotic fluid. Developing novel in vitro models that mimic in vivo uterine physiology is essential to study microbial pathogenesis. We utilized the feto-maternal interface organ-on-chip (FMi-OOC) device and determined the propagation of Ureaplasma parvum, and its impact on cell signaling and inflammation. METHOD OF STUDY: FMi-OOC is a microphysiologic device mimicking fetal membrane/decidua interconnected through microchannels. The impact of resident decidual CD45+ leukocytes was also determined by incorporating them into the decidual chamber in different combinations with U. parvum. We tested the propagation of live U. parvum from the decidual to the amniochorion membranes (immunocytochemistry and quantitative PCR), determined its impact on cytotoxicity (LDH assay), cell signaling (JESSTM Western Blot), cellular transition (immunostaining for vimentin and cytokeratin), and inflammation (cytokine bead array). RESULTS: U. parvum transversed the chorion and reached the amnion epithelium after 72 hours but did not induce cell signaling kinases (p38MAPK and JNK) activation, or cellular transition (epithelial-mesenchymal), regardless of the presence of immune cells. The inflammatory response was limited to the choriodecidual interface and did not promote inflammation in the amnion layer. CONCLUSIONS: Our data suggest that U. parvum is poorly immunogenic and does not produce massive inflammatory changes at the feto-maternal interface. We speculate that the presence of U. parvum may still compromise the feto-maternal interface making it susceptible to other pathogenic infection.


Assuntos
Nascimento Prematuro , Ureaplasma , Recém-Nascido , Feminino , Humanos , Transdução de Sinais , Âmnio , Inflamação
8.
Am J Reprod Immunol ; 90(2): e13754, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37491918

RESUMO

PROBLEM: Interferon-epsilon (IFNε) is the only type I IFN constitutively expressed in the female reproductive tract and fluctuates across the menstrual cycle in humans. Mouse models show that IFNε protects against Chlamydia trachomatis, Herpes Simplex Virus, HIV, and Zika in mice, but human studies are limited. Bacterial sexually transmitted infections (STI) can ascend to the upper genital tract and cause pelvic inflammatory disease (PID) and subsequent infertility. However, the host immunological mechanisms that play a role in the ascension and infection of the endometrium in individuals with clinically suspected PID are not elucidated. METHOD OF STUDY: This pilot investigation determined if IFNε gene variants are associated with bacterial vaginosis (BV) and endometrial infection with C. trachomatis, Neisseria gonorrhoeae, and Mycoplasma genitalium using biospecimens from 154 self-report Black individuals who participated in the PID Evaluation and Clinical Health (PEACH) study. RESULTS: The T allele for rs2039381 was associated with endometrial STI infection (OR 2.7, 95% CI: 1.0-7.1) and the C allele for rs1125488 was inversely associated with BV (OR: .2, 95% CI: .05-.8). CONCLUSIONS: Few studies have examined IFNε gene variants, our study raises the possibility that IFNε gene variants may be a potential host contributor to STI pathogenesis.


Assuntos
Infecções por Chlamydia , Infecções por Mycoplasma , Doença Inflamatória Pélvica , Infecções Sexualmente Transmissíveis , Vaginose Bacteriana , Infecção por Zika virus , Zika virus , Feminino , Humanos , Animais , Camundongos , Infecções por Mycoplasma/microbiologia , Infecções Sexualmente Transmissíveis/genética , Doença Inflamatória Pélvica/microbiologia , Vaginose Bacteriana/microbiologia , Chlamydia trachomatis , Endométrio , Interferons/genética
9.
Contemp Fam Ther ; : 1-11, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37361258

RESUMO

Providing therapy services via Telemental Health (TMH), or teletherapy, has exponentially increased since the COVID-19 pandemic. Although previous research demonstrates that TMH is as effective as in-person therapy, there is a dearth of research on how therapists should address technology-perpetrated abuse and intimate partner violence (IPV) over TMH. This is extremely problematic given the frequency in which violence occurs in romantic relationships. This manuscript aims to address this gap by providing concrete clinical guidelines based on existing literature and professional experience with engaging in TMH services. The authors review literature on technology-perpetrated abuse and discuss innovative ways to assess and treat IPV over TMH by adapting protocols from Domestic Violence-Focused Couple's Therapy. Within this, the authors integrate research on high-conflict couples to provide new suggestions on how to manage couples who escalate quickly and who are prone to violence. The manuscript will conclude with future directions for research.

10.
FASEB J ; 37(7): e23000, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249377

RESUMO

Oxidative stress (OS) and inflammation arising from cellular derangements at the fetal membrane-decidual interface (feto-maternal interface [FMi]) is a major antecedent to preterm birth (PTB). However, it is impractical to study OS-associated FMi disease state during human pregnancy, and thus it is difficult to develop strategies to reduce the incidences of PTB. A microfluidic organ-on-chip model (FMi-OOC) that mimics the in vivo structure and functions of FMi in vitro was developed to address this challenge. The FMi-OOC contained fetal (amnion epithelial, mesenchymal, and chorion) and maternal (decidua) cells cultured in four compartments interconnected by arrays of microchannels to allow independent but interconnected co-cultivation. Using this model, we tested the effects of OS and inflammation on both fetal (fetal → maternal) and maternal (maternal → fetal) sides of the FMi and determined their differential impact on PTB-associated pathways. OS was induced using cigarette smoke extract (CSE) exposure. The impacts of OS were assessed by measuring cell viability, disruption of immune homeostasis, epithelial-to-mesenchymal transition (EMT), development of senescence, and inflammation. CSE propagated (LC/MS-MS analysis for nicotine) over a 72-hour period from the maternal to fetal side, or vice versa. However, they caused two distinct pathological effects on the maternal and fetal cells. Specifically, fetal OS induced cellular pathologies and inflammation, whereas maternal OS caused immune intolerance. The pronounced impact produced by the fetus supports the hypothesis that fetal inflammatory response is a mechanistic trigger for parturition. The FMi disease-associated changes identified in the FMi-OOC suggest the unique capability of this in vitro model in testing in utero conditions.


Assuntos
Sistemas Microfisiológicos , Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Humanos , Parto , Estresse Oxidativo , Inflamação
11.
Mol Biol Rep ; 50(4): 3035-3043, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36662453

RESUMO

BACKGROUND: Ureaplasma, a genus of the order Mycoplasmatales and commonly grouped with Mycoplasma as genital mycoplasma is one of the most common microbes isolated from women with infection/inflammation-associated preterm labor (PTL). Mycoplasma spp. produce sialidase that cleaves sialic acid from glycans of vaginal mucous membranes and facilitates adherence and invasion of the epithelium by pathobionts, and dysregulated immune response. However, whether Ureaplasma species can induce the production of sialidase is yet to be demonstrated. We examined U. parvum-infected vaginal epithelial cells (VECs) for the production of sialidase and pro-inflammatory cytokines. METHODS: Immortalized VECs were cultured in appropriate media and treated with U. parvum in a concentration of 1 × 105 DNA copies/ml. After 24 h of treatment, cells and media were harvested. To confirm infection and cell uptake, immunocytochemistry for multi-banded antigen (MBA) was performed. Pro-inflammatory cytokine production and protein analysis for sialidase confirmed pro-labor pathways. RESULTS: Infection of VECs was confirmed by the presence of intracellular MBA. Western blot analysis showed no significant increase in sialidase expression from U. parvum-treated VECs compared to uninfected cells. However, U. parvum infection induced 2-3-fold increased production of GM-CSF (p = 0.03), IL-6 (p = 0.01), and IL-8 (p = 0.01) in VECs compared to controls. CONCLUSION: U. parvum infection of VECs induced inflammatory imbalance associated with vaginal dysbiosis but did not alter sialidase expression at the cellular level. These data suggest that U. parvum's pathogenic effect could be propagated by locally produced pro-inflammatory cytokines and, unlike other genital mycoplasmas, may be independent of sialidase.


Assuntos
Neuraminidase , Ureaplasma , Recém-Nascido , Feminino , Humanos , Ureaplasma/genética , Células Epiteliais , Citocinas
12.
Am J Reprod Immunol ; 89(3): e13664, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495029

RESUMO

BACKGROUND: During gestation, the decidua is an essential layer of the maternal-fetal interface, providing immune support and maintaining inflammatory homeostasis. Although Chlamydia (C.) trachomatis is associated with adverse pregnancy outcomes the pathogenic effects on maternal decidua contributing to adverse events are not understood. This study examined how C. trachomatis antigen affects cell signaling, cell death, and inflammation in the decidua. METHODS: Primary decidua cells (pDECs) from term, not-in-labor, fetal membrane-decidua were cultured using the following conditions: (1) control - standard cell culture conditions, (2) 100 ng/ml or (3) 200 ng/ml of C. trachomatis antigen to model decidual cell infection in vitro. Differential expression of Toll-like receptor (TLR) 4 (receptor for C. trachomatis antigen), signaling pathway markers phosphorylated TGF-Beta Activated Kinase 1 (PTAB1), TAB1, phosphorylated p38 mitogen-activated protein kinases (Pp38 MAPK), and p38 MAPK (western blot), decidual cell apoptosis and necrosis (flow cytometry), and inflammation (ELISA for cytokines) were determined in cells exposed to C. trachomatis antigen. T-test was used to assess statistical significance (p < 0.05). RESULTS: C. trachomatis antigen significantly induced expression of TLR4 (p = 0.03) and activation of TAB1 (p = 0.02) compared to controls. However, it did not induce p38 MAPK activation. In addition, pDECs maintained their stromal cell morphology when exposed to C. trachomatis antigen showing no signs of apoptosis and/or necrosis but did induce pro-inflammatory cytokine interleukin (IL)-6 (100 ng/ml: p = 0.02 and 200 ng/ml: p = 0.03), in pDECs compared to controls. CONCLUSION: Prenatal C. trachomatis infection can produce antigens that induce TLR4-TAB1 signaling and IL-6 inflammation independent of Pp38 MAPK and apoptosis and necrosis. This suggests that C. trachomatis can imbalance decidual inflammatory homeostasis, potentially contributing to adverse events during pregnancy.


Assuntos
Chlamydia trachomatis , Inflamação , Receptor 4 Toll-Like , Feminino , Humanos , Gravidez , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Chlamydia trachomatis/fisiologia , Citocinas/metabolismo , Decídua/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Necrose/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Lab Chip ; 22(23): 4574-4592, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36322152

RESUMO

Objectives: To improve preclinical drug testing during pregnancy, we developed multiple microfluidic organ-on-chip (OOC) devices that represent the structure, functions, and responses of the two feto-maternal interfaces (FMis) in humans (fetal membrane [FMi-OOC] and placenta [PLA-OOC]). This study utilized feto-maternal interface OOCs to test the kinetics and efficacy of drugs during pregnancy. Study design: The FMi-OOC contained amnion epithelial, mesenchymal, chorion trophoblast, and decidual cells. The PLA-OOC contained cytotrophoblasts (BeWo), syncytiotrophoblasts (BeWo + forskolin), and human umbilical vein endothelial cell lines. Therapeutic concentrations of either pravastatin or rosuvastatin (200 ng mL-1), a model drug for these experiments, were applied to either decidua (in FMi-OOC) and syncytiotrophoblasts (in PLA-OOC) chambers under normal and oxidative stress conditions (induced by cigarette smoke extract [CSE 1 : 25]) to evaluate maternal drug exposure during normal pregnancy or oxidative stress (OS) associated pathologies, respectively. We determined statin pharmacokinetics and metabolism (LC-MS/MS), drug-induced cytotoxicity (LDH assay), and efficacy to reduce OS-induced inflammation (multiplex cytokine assay). Results: Both OOCs mimicked two distinct human feto-maternal interfaces. The drugs tested permeated the maternal-fetal cell layers of the FMi-OOC and PLA-OOC within 4 hours and generated cell and time-specific statin metabolites from various cell types without causing any cytotoxicity. OS-induced pro-inflammatory cytokines were effectively reduced by statins by increasing anti-inflammatory cytokine response across the FMi-OOC and PLA-OOC. Conclusion: Two distinct feto-maternal interface OOCs were developed, tested, and validated for their utility to conduct preclinical trials during pregnancy. We demonstrated that the placenta and fetal membranes-decidual interface both are able to transport and metabolize drugs and that the safety and efficacy of a drug can be determined using the anatomical structures recreated on OOCs.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Gravidez , Feminino , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Citocinas , Poliésteres
14.
Am J Reprod Immunol ; 88(6): e13638, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36308737

RESUMO

PROBLEM: Fetal neuroinflammation has been linked to preterm birth-related intraamniotic infection and inflammation; However, the contribution of fetal sex and maternal race/ethnicity is unknown. To determine if fetal sex and maternal race/ethnicity influence neuroinflammation, an organ-on-chip (OOC) model were established under normal or pathologic conditions utilizing amniotic fluid. METHOD OF STUDY: OOC is composed of two-cell culture chambers connected by Type IV collagen-coated microchannels. Human fetal astroglia (SVGp12) and microglia (HMC3) were co-cultured at an 80:20 ratio in the inner chamber. The outer chamber contained amniotic fluid (AF) from male and female fetuses of White Hispanic (WH) and African-American (AA) pregnant women with or without lipopolysaccharide (LPS-100 ng/ml) and incubated for 48 h. Glial migration (brightfield microscopy), activation (Immunocytochemistry), and cytokine production (Luminex assays) were quantified and compared (N = 4 for each category of sex and race/ethnicity). RESULTS: In a pooled analysis, AF+LPS did not induce glial activation or inflammatory changes compared to AF alone. When stratified by sex, male AF+LPS promoted significant glial activation (high CD11b:p < 0.05; low Iba1:p < 0.01) compared to male AF without LPS; however, this was not associated with changes in pro-inflammatory cytokines. When stratified by race/ethnicity, AF+LPS induced glial activation in both groups, but a differential increase in pro-inflammatory cytokines was seen between WH and AA AF (WH-interleukin-1ß: p < 0.05; AA-interleukin-8: p < 0.01). CONCLUSION: This OOC model of fetal neuroinflammation has determined that race/ethnicity differences do exist for perinatal brain injury. The fetal sex of neonates was not a determining factor of susceptibility to intraamniotic inflammation leading to neuroinflammation.


Assuntos
Corioamnionite , Nascimento Prematuro , Recém-Nascido , Feminino , Masculino , Gravidez , Humanos , Lipopolissacarídeos , Etnicidade , Doenças Neuroinflamatórias , Inflamação/patologia , Líquido Amniótico , Citocinas
15.
FASEB J ; 36(10): e22551, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36106554

RESUMO

Genital mycoplasmas can break the cervical barrier and cause intraamniotic infection and preterm birth. This study developed a six-chamber vagina-cervix-decidua-organ-on-a-chip (VCD-OOC) that recapitulates the female reproductive tract during pregnancy with culture chambers populated by vaginal epithelial cells, cervical epithelial and stromal cells, and decidual cells. Cells cultured in VCD-OOC were characterized by morphology and immunostaining for cell-specific markers. We transferred the media from the decidual cell chamber of the VCD-OOC to decidual cell chamber in feto-maternal interface organ-on-a-chip (FMi-OOC), which contains the fetal membrane layers. An ascending Ureaplasma parvum infection was created in VCD-OOC. U. parvum was monitored for 48 h post-infection with their cytotoxicity (LDH assay) and inflammatory effects (multiplex cytokine assay) in the cells tested. An ascending U. parvum infection model of PTB was developed using CD-1 mice. The cell morphology and expression of cell-specific markers in the VCD-OOC mimicked those seen in lower genital tract tissues. U. parvum reached the cervical epithelial cells and decidua within 48 h and did not cause cell death in VCD-OOC or FMi-OOC cells. U. parvum infection promoted minimal inflammation, while the combination of U. parvum and LPS promoted massive inflammation in the VCD-OOC and FMi-OOC cells. In the animal model, U. parvum vaginal inoculation of low-dose U. parvum did not result in PTB, and even a high dose had only some effects on PTB (20%). However, intra-amniotic injection of U. parvum resulted in 67% PTB. We report the colonization of U. parvum in various cell types; however, inconsistent, and low-grade inflammation across multiple cell types suggests poor immunogenicity induced by U. parvum.


Assuntos
Nascimento Prematuro , Infecções por Ureaplasma , Animais , Colo do Útero , Decídua , Feminino , Humanos , Recém-Nascido , Inflamação , Dispositivos Lab-On-A-Chip , Camundongos , Gravidez , Ureaplasma , Vagina
16.
Front Cell Dev Biol ; 10: 931609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046342

RESUMO

This study determined if exosomes from ectocervical epithelial (ECTO) cells infected with Ureaplasma parvum (U. parvum) can carry bacterial antigens and cause inflammation at the feto-maternal interface using two organ-on-chip devices, one representing the vagina-cervix-decidua and another one mimicking the feto-maternal interface, and whether such inflammation can lead to preterm birth (PTB). Exosomes from U. parvum-infected ECTO cells were characterized using cryo-electron microscopy, nanoparticle tracking analysis, Western blot, and Exoview analysis. The antigenicity of the exosomes from U. parvum-infected ECTO cells was also tested using THP-1 cells and our newly developed vagina-cervix-decidua organ-on-a-chip (VCD-OOC) having six microchannel-interconnected cell culture chambers containing cells from the vagina, ectocervical, endocervical, transformation zone epithelia, cervical stroma, and decidua. The VCD-OOC was linked to the maternal side of our previously developed feto-maternal interface organ-on-a-chip (FMi-OOC). Cell culture media were collected after 48 h to determine the cytokine levels from each cell line via ELISA. For physiological validation of our in vitro data, high-dose exosomes from U. parvum-infected ECTO cells were delivered to the vagina of pregnant CD-1 mice on E15. Mice were monitored for preterm birth (PTB, < E18.5 days). Exosomes from ECTO cells infected with U. parvum (UP ECTO) showed significant downregulation of exosome markers CD9, CD63, and CD81, but contained multiple banded antigen (MBA), a U. parvum virulence factor. Monoculture experiments showed that exosomes from UP ECTO cells delivered MBA from the host cell to uninfected endocervical epithelial cells (ENDO). Moreover, exposure of THP-1 cells to exosomes from UP ECTO cells resulted in increased IL-8 and TNFα and reduced IL-10. The OOC experiments showed that low and high doses of exosomes from UP ECTO cells produced a cell type-specific inflammatory response in the VCD-OOC and FMi-OOC. Specifically, exosomes from UP ECTO cells increased pro-inflammatory cytokines such as GM-CSF, IL-6, and IL-8 in cervical, decidual, chorion trophoblast, and amnion mesenchymal cells. The results from our OOC models were validated in our in vivo mice model. The inflammatory response was insufficient to promote PTB. These results showed the potential use of the VCD-OOC and FMi-OOC in simulating the pathophysiological processes in vivo.

17.
Lab Chip ; 21(10): 1956-1973, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008619

RESUMO

Preterm birth (PTB; <37 weeks of gestation) impacts ∼11% of all pregnancies and contributes to 1 million neonatal deaths worldwide annually. An understanding of the feto-maternal (F-M) signals that initiate birthing (parturition) at term is critical to design strategies to prevent their premature activation, resulting in PTB. Although endocrine and immune cell signaling are well-reported, fetal-derived paracrine signals capable of transitioning quiescent uterus to an active state of labor are poorly studied. Recent reports have suggested that senescence of the fetal amnion membrane coinciding with fetal growth and maturation generates inflammatory signals capable of triggering parturition. This is by increasing the inflammatory load at the feto-maternal interface (FMi) tissues (i.e., amniochorion-decidua). High mobility group box 1 protein (HMGB1), an alarmin, is one of the inflammatory signals released by senescent amnion cells via extracellular vesicles (exosomes; 40-160 nm). Increased levels of HMGB1 in the amniotic fluid, cord and maternal blood are associated with term and PTB. This study tested the hypothesis that senescent amnion cells release HMGB1, which is fetal signaling capable of increasing FMi inflammation, predisposing them to parturition. To test this hypothesis, exosomes from amnion epithelial cells (AECs) grown under normal conditions were engineered to contain HMGB1 by electroporation (eHMGB1). eHMGB1 was characterized (quantity, size, shape, markers and loading efficiency), and its propagation through FMi was tested using a four-chamber microfluidic organ-on-a-chip device (FMi-OOC) that contained four distinct cell types (amnion and chorion mesenchymal, chorion trophoblast and decidual cells) connected through microchannels. eHMGB1 propagated through the fetal cells and matrix to the maternal decidua and increased inflammation (receptor expression [RAGE and TLR4] and cytokines). Furthermore, intra-amniotic injection of eHMGB1 (containing 10 ng) into pregnant CD-1 mice on embryonic day 17 led to PTB. Injecting carboxyfluorescein succinimidyl ester (CFSE)-labeled eHMGB1, we determined in vivo kinetics and report that eHMGB1 trafficking resulting in PTB was associated with increased FMi inflammation. This study determined that fetal exosome mediated paracrine signaling can generate inflammation and induce parturition. Besides, in vivo functional validation of FMi-OOC experiments strengthens the reliability of such devices to test physiologic and pathologic systems.


Assuntos
Exossomos , Proteína HMGB1 , Nascimento Prematuro , Animais , Exossomos/metabolismo , Feminino , Proteína HMGB1/metabolismo , Camundongos , Gravidez , Reprodutibilidade dos Testes , Transdução de Sinais
18.
Mol Cell Endocrinol ; 529: 111276, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33823217

RESUMO

The cervix undergoes extensive remodeling throughout pregnancy and parturition. This process involves both ECM collagen degradation and cellular remodeling, which includes cell proliferation, transition and migration. Progesterone (P4) has been used clinically to delay cervical ripening and prevent preterm birth (PTB). However, the mechanisms by which progesterone affects cell transition and the migration of cervical epithelial and stromal cells are not yet fully known. In this study, we documented the role of a gestational level of P4 in the cellular transition (epithelial-mesenchymal transition [EMT] and mesenchymal-epithelial transition [MET]), cell migration, and inflammatory responses of endocervical epithelial cells (EEC) and cervical stromal cells (CSC). EEC and CSC were treated with LPS and P4 for 6 days. The epithelial:mesenchymal ratio (regular microscopy and cell shape index analysis), shift in intermediate filaments (immunofluorescence microscopy and western blot analyses for cytokeratin [CK]-18 and vimentin), adhesion molecules and transcription factors (western blot analyses for E-cadherin, N-cadherin and SNAIL), were used to determine growth characteristics and EMT and MET changes in EEC and CSC under the indicated conditions. To test cell remodeling, scratch assays followed by cellular analyses as mentioned above were performed. Inflammatory cytokines (interleukin-6 [IL-6], tumor necrosis factor α [TNFα]) and matrix metallopeptidase 9 (MMP9) were measured by ELISA. LPS promoted EMT (decreased cell shape index, decreased CK-18 and E-cadherin, increased vimentin, N-cadherin, and SNAIL), and increased IL-6 and MMP9 production by EEC. A gestational level of P4 prevented LPS-induced EMT in EEC and exhibited anti-inflammatory effect in both EEC and CSC. LPS slowed down wound healing in CSC but P4 treatment prevented the negative impact of LPS in CSC wound healing. These results may explain the cellular mechanisms by which P4 helps to stabilize the cervical epithelial barrier and preserve the mechanical and tensile strength of the cervical stromal layer, which are important in normal cervical remodeling processes during pregnancy.


Assuntos
Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Progesterona/farmacologia , Células Estromais/efeitos dos fármacos , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Colo do Útero/citologia , Colo do Útero/efeitos dos fármacos , Colo do Útero/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Queratina-18/genética , Queratina-18/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Parto , Gravidez , Nascimento Prematuro/genética , Nascimento Prematuro/metabolismo , Nascimento Prematuro/patologia , Progesterona/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Vimentina/genética , Vimentina/metabolismo
19.
FASEB J ; 35(4): e21463, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33689188

RESUMO

Damage to the cervical epithelial layer due to infection and inflammation is associated with preterm birth. However, the individual and/or collective roles of cervical epithelial layers in maintaining cervical integrity remain unclear during infection/inflammation. To determine the intercellular interactions, we developed an organ-on-chip of the cervical epithelial layer (CE-OOC) composed of two co-culture chambers connected by microchannels, recapitulating the ectocervical and endocervical epithelial layers. Further, we tested the interactions between cells from each distinct region and their contributions in maintaining cervical integrity in response to LPS and TNFα stimulations. The co-culture of ectocervical and endocervical cells facilitated cellular migration of both epithelial cells inside the microchannels. Compared to untreated controls, both LPS and TNFα increased apoptosis, necrosis, and senescence as well as increased pro-inflammatory cytokine productions by cervical epithelial cells. In summary, the CE-OOC established an in vitro model that can recapitulate the ectocervical and the endocervical epithelial regions of the cervix. The established CE-OOC may become a powerful tool in obstetrics and gynecology research such as in studying cervical remodeling during pregnancy and parturition and the dynamics of cervical epithelial cells in benign and malignant pathology in the cervix.


Assuntos
Colo do Útero/patologia , Células Epiteliais/patologia , Epitélio/patologia , Inflamação/metabolismo , Animais , Movimento Celular/fisiologia , Colo do Útero/metabolismo , Técnicas de Cocultura , Células Epiteliais/metabolismo , Epitélio/metabolismo , Feminino , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL
20.
Am J Reprod Immunol ; 85(5): e13370, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33152143

RESUMO

PROBLEM: Estrogen (E2) is one of the main steroid hormones associated with pregnancy and parturition. High levels of E2 increase uterine contractions, promote fetal membrane weakening, and induce degradation of the cervical extracellular matrix (ECM). Current evidence supports the role of E2 in epithelial-to-mesenchymal transition (EMT) and inflammation in different cell types; however, its effects on the cellular components of the cervix are still unknown. METHOD OF STUDY: In this study, we assessed the effects of gestational levels of E2 in: (a) the cellular transition of endocervical epithelial cells (EEC) and cervical stromal cells (CSC) in vitro using immunocytochemical staining and Western blot analyses for EMT markers (cytokeratin-18, E-cadherin, N-cadherin, SNAIL, and vimentin); (b) cell migration using in vitro scratch assays; (c) inflammatory cytokine (interleukin 1ß and TNF-α) and MMP9 production under untreated and lipopolysaccharide (LPS)-treated conditions using immunoassays. RESULTS: E2 treatment and co-treatment with LPS as a proxy for infection maintained the metastate of EEC (expression of both cytokeratin and vimentin) and the mesenchymal state of CSC. E2 delayed wound healing, which mimics the tissue remodeling process, in EEC and CSC. E2 led to persistently elevated levels of vimentin throughout the EEC wound healing process. E2 did not affect inflammatory cytokine production by EEC and CSC but increased MMP9 production by EEC. CONCLUSION: Collectively, these results show that third trimester levels of E2 may permit localized inflammation, increase MMP-9 production, and cause an EMT-mediated impairment of the remodeling process in the cervix in vitro. These data suggest a potential contribution of E2 in cervical ripening.


Assuntos
Colo do Útero/citologia , Células Epiteliais/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Células Estromais/efeitos dos fármacos , Movimento Celular , Células Cultivadas , Citocinas/imunologia , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Metaloproteinase 9 da Matriz/imunologia , Gravidez , Terceiro Trimestre da Gravidez , Células Estromais/fisiologia , Vimentina/imunologia , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...